1. Ten cuttings were taken from each of 100 randomly selected garden plants. The numbers of cuttings that did not grow were recorded.

The results are as follows

| No. of cuttings <br> which did <br> not grow | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8,9 or 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequence | 11 | 21 | 30 | 20 | 12 | 3 | 2 | 1 | 0 |

(a) Show that the probability of a randomly selected cutting, from this sample, not growing is 0.223

A gardener believes that a binomial distribution might provide a good model for the number of cuttings, out of 10, that do not grow.

He uses a binomial distribution, with the probability 0.2 of a cutting not growing. The calculated expected frequencies are as follows

| No. of cuttings which <br> did not grow | 0 | 1 | 2 | 3 | 4 | 5 or more |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Expected frequence | $r$ | 26.84 | $s$ | 20.13 | 8.81 | $t$ |

(b) Find the values of $r, s$ and $t$.
(c) State clearly the hypotheses required to test whether or not this binomial distribution is a suitable model for these data.

The test statistic for the test is 4.17 and the number of degrees of freedom used is 4 .
(d) Explain fully why there are 4 degrees of freedom.
(e) Stating clearly the critical value used, carry out the test using a $5 \%$ level of significance.

1. (a) $p=\frac{0 \times 11+1 \times 21+\ldots}{10 \times(11+21+\ldots) \text { or } 10 \times 100},=\frac{223}{1000}=0.223\left(^{*}\right)$ Accept $\frac{223}{1000}$ M1, A1cso

M1 Must show clearly how to get either 223 or 1000. As printed or better.

A1cso for showing how to get both 223 and 1000 and reaching $p=0.223$
(b) $\quad r=(0.8)^{10} \times 100=10.7374$
awrt $\mathbf{1 0 . 7 4}$ M1A1
$s=\binom{10}{2}(0.8)^{8} \times(0.2)^{2} \times 100=30.198 \ldots$ awrt 30.2

A1
$t=100-[r+s+26.84+20.13+8.81]=$
awrt 3.28 A1cao
4

M1 for any correct method (a correct expression) seen for $r$ or $s$.
$1^{\text {st }} \mathrm{A} 1$ for correct value for $r$ awrt 10.74
$2^{\text {nd }} \mathrm{A} 1$ for $s=$ awrt 30.2
$3^{\text {rd }} \mathrm{A} 1$ for $t=3.28$ only
(c) $\quad \mathrm{H}_{0}: \operatorname{Binomial}([n=10], p=0.2)$ is a suitable model for these data B1
$\mathrm{H}_{1}$ : Binomial ( $[n=10], p=0.2$ ) is NOT a suitable model for these data
B1

B1 for each. The value of $p$ must be mentioned at least once.
Accept B(10, 0.2)
If hypotheses are correct but with no value of $p$ then score B0B1
Minimum is $X \sim \mathrm{~B}(10,0.2)$. If just $\mathrm{B}(10,0.2)$ and not $\mathrm{B}(10,0.2)$
award B1B0
(d) Since $t<5$, the last two groups are combined
and $v=4=5-1$
A1 2
M1 for combining groups (must be stated or implied by a new table with combined cell seen)

A1 for the calculation $4=5-1$
(e) Critical value $\chi_{4}{ }^{2}(5 \%)=9.488 \quad$ B1

Not significant or do not reject null hypothesis M1
The binomial distribution with $p=0.2$ is a suitable model for the number of cuttings that do not grow

A1 3

M1 for a correct statement based on 4.17 and their cv (context not required) (may be implied)
Use of 4.17 as a critical value scores B0M0A0
A1 for a correct interpretation in context and $p=0.2$ and cuttings mentioned.

1. Part (a) was a "Show that..." and many candidates failed to provide sufficient evidence. Some 223clearly showed where the 223 came from but an alarming number thought that
$\frac{223}{100}=0.223$, others assumed the 223 but did show that the denominator was $10 \times 100$ with only the most careful students explaining how both numerator and denominator were found and securing both marks. Part (b) was well done although some did not give answers to 2 decimal places as in the table. Most stated the hypotheses correctly but some failed to include the value of $p=0.2$. Part (d) caught out a few candidates who failed to realise that the final two classes needed merging leading to the calculation $5-1=4$, the common error was to assume that $p$ had been estimated and $4=6-1-1$. A number of candidates decided to calculate the test statistic themselves rather than using the value of 4.17 given in the question but they usually made a correct comparison with the critical value although few remembered to mention the "cuttings" in their final conclusion.
